
MATH 8850

Homework Assignment 2

PROBLEM 1: Many applications arise in which testing has to be performed in order
to complete classification. In this problem we will investigate a strategy first proposed
by Dorfman (1943), which is commonly referred to as group (or pool) testing. The
conceptualization of this strategy was centered around the need to screen WWII inductees
for syphilis. The premise, at this time, most of the soldiers inducted into the armed forces
would not be infected with syphilis; i.e., this disease had a relatively low prevalence.
Thus, if subjects were tested one-by-one then most of the observed testing responses
would be negative. Question, why spend so much money on testing people who are likely
negative? And the simple answer is we have to identify those who are positive. Dorfman’s
solution, rather than test everyone individually, collect and amalgamate specimens (e.g.,
blood, urine, saliva, etc.) to form pooled specimens which could be tested. If a pool
tests negative, then all contributing specimens (i.e., individuals) are diagnosed negative,
at the expense of only one test. If a pool tests positive, further testing would have
to be completed in order to identify which individuals in the pool were positive; e.g.,
simply retest each specimen contributing to positive pools individually. If the disease
has a low prevalence within the population, it is relatively easy to see that most pools
will test negative, and hence a great deal of savings in testing cost can be realized.
Thompson (1967) repurposed the use of group testing as a means to more effectively
collect (i.e., at a reduced cost of testing) data for the purposes of estimating population
level characteristics; e.g., the prevalence of the binary characteristic of interest. This
problem will consider Thompson’s approach to data collection and estimation. Let Yij =
1 denote that the ith individual assigned to the jth pool posses the binary characteristic of
interest, and Yij = 0 otherwise, for i = 1, ..., cj and j = 1, ..., J , where cj denotes the size of

the jth pool and J denotes the number of pools. We will assume that Yij
iid∼ Bernoulli(p),

where p denotes the prevalence of the binary characteristic. Our goal is to estimate the
prevalence: i.e., p. In order to save cost, we decide not the measure the Yij directly, but
rather decide to pool specimens and take measurements on the pools; i.e., we will observe
Zj = I (

∑c
i=1 Yij > 0), where Zj = 1 denotes the event that the jth pool consists of at

least one positive, and Zj = 0 otherwise. Note, we do not get to see the Yij, they are
latent.

(a) Under the simplifying assumption that a common pool size is used (i.e., cj = c for
all j) it is possible to derive the MLE of p, in terms of the Zj. Derive the MLE
of p, establish a central limit theorem without appealing to the MLE theory, and
use these results to propose an asymptotic confidence interval for p. Write an R
function that accepts 3 inputs: 1) a vector containing the Zj, a scalar specifying the
pool size, and a user specified significance level α. This function should then output
the estimated MLE, its asymptotic standard error, and a (1− α)100% asymptotic
confidence interval.
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(b) Here we will investigate the performance of the MLE, in terms of being an estimator
of p, across a variety of sample sizes J , pool sizes c, and values of p. Specifically,
consider p ∈ {0.001, 0.002, ...0.2}, c ∈ {4, 6, 8, 10}, and J = {25, 50, 100, 200}. For
each combination of (p, c, J) generate 1000 group testing data sets. Hint: for a
specified combination of (p, c, J) one can generate a data set using the following
code:

J<-??

c<-??

p<-??

N<-J*c

stat.mat<-matrix(rbinom(N,1,p),nrow=J,ncol=c)

Zj<-apply(stat.mat,1,max)

From the results of this study you will construct 3 figures each of which have 4
panes, one each for the different values of J : Within each pane of Figure 1, plot an
estimate of the MLE’s bias vs. p, for the different values of c; i.e., there should be
4 curves plotted in this figure, one each for the different values of c. Within each
pane of Figure 2, plot the difference in the average estimated asymptotic standard
error and the sample standard deviation of the MLEs vs. p, for the different values
of c. Within each pane of Figure 3, plot the empirical coverage probabilities for
the asymptotic confidence interval (at the α = 0.05 significance level) vs. p, for the
different values of c. Write a brief discussion of your findings.

(c) Making things more realistic. In many applications, the use of a common pool size is
not practical (i.e., cj 6= cj′ for j 6= j′). In this situation, an analytical expression for
the MLE of p is not available. Further, the observed testing responses can be subject
to measurement error; i.e., a specimen tests positive when it is truly negative and
vice versa. Typically, the accuracies of a test are quantified through two quantities
sensitivity (Se) and (Sp), where Se (Sp) denotes the probability that a truly positive
(negative) specimen will test positive (negative). To acknowledge that testing error
exists, we denote the observed testing responses as Z̃j, where Z̃j = 1 denotes the
event that the jth pool tests positive, and Z̃j = 0 otherwise. Derive the likelihood
for the observed data {(Z̃j, cj), j = 1, ..., J}. Using the likelihood, in R code a
function that can be used to find the MLE of p, an estimate of its asymptotic
variance, and an asymptotic confidence interval. Hint: it might be useful to look at
the optimize function in R. This function should then output the estimated MLE,
its asymptotic standard error, and a (1− α)100% asymptotic confidence interval.

d.) Using your results from part (c), perform the simulation study described in (b),
with two alterations: 1) for each data set randomly generate pool sizes cj as 2 plus
a Poisson random variable whose mean is λ, take λ ∈ {2, 4, 6}; 2) take the testing
accuracies to be Se = 0.95 and Sp = 0.98. Hint: given a vector of the trues statuses
of the pools the following code can be used to generate the error laden observed
testing responses:
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Se<-??

Sp<-??

tZj<-rbinom(N,1,(Se*Zj + (1-Sp)*(1-Zj)))

Using the results of this study, construct the 3 figure discussed in (b) and discuss
your findings.

PROBLEM 2: Vansteelandt et al. (2000) extended the seminal work of Thompson
(1967) to the regressions setting; i.e., instead of simply estimating a population level
prevalence, we are now going to be interested in relating covariate information to the

infection statuses of the individuals. As before, let Yij|xi
ind∼ Bernoulli{p(xij)}, where

p(xij) = exp(x′
ijβ)/{1 + exp(x′

ijβ)}, xi = (1, xij1, ..., xijp)
′ is a vector of predictor vari-

ables, and β = (β0, β1, ..., βp) is the corresponding vector of regression coefficients. Note,
the primary change here is that each individual has their own, predictor specific, proba-
bility of being positive. Our goal is to estimate β. In order to save cost, we decide not
the measure the Yij directly, but rather decide to pool specimens and take measurements
on the pools.

(a) Derive the likelihood of the observed data, your likelihood should be general enough
to accommodate imperfect testing and pool sizes that vary from group to group.
Using your likelihood, right and R function that accepts as inputs a vector of pool
testing responses, the usual design matrix, a vector identifying the pool sizes, a
scalar identifying the sensitivity of the test, a scalar specifying the specificity of
the test, and the significance level α. Be careful to make sure you associate the
covariates to the testing responses in the correct fashion. Based on these inputs,
your function should return the following:

(i) The MLEs of the regression parameters, their estimated asymptotic standard
errors, and a (1 − α)100% asymptotic confidence interval for each of the re-
gression coefficients.

(ii) A table that summarizes the test statistics (both likelihood ratio and Wald)
and p-values associated with testing H0 : βk = 0 vs. H1 : βk 6= 0, for
k = 0, 1, ..., p, when all other predictors are in the model.

(iii) Test statistics (both likelihood ratio and Wald) and their associated p-value
for the test of H0 : β1 = ... = βp = 0 vs. H1 : at least one βk 6= 0.

(b) Derive a (1 − α)100% asymptotic confidence interval for the probability that an
individual with covariates xij will be truly positive; i.e., a confidence interval for
p(xij). Then, write an R function that accepts 3 objects as inputs: 1) a matrix
whose rows are the xij at which we wish to create confidence intervals for p(xij), 2)
the significance level α, and 3) the output from the function you wrote in part (a).
The output from this function should be a matrix whose rows consist of the MLE of
p(xij) and the endpoints of the corresponding (1− α)100% asymptotic confidence
interval.
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(c) Develop and conduct a simulation study that examines the performance of the
proposed regression methodology, be succinct in summarizing your study. Hints:
1) you are asking the data to paint a much bigger picture and as such you may
want to consider sample sizes of say J > 200, 2) group testing is only effective in
situations in which the population level prevalence is small (e.g., if prevalence is
0.80 then you will likely only see positive pools), keep this in mind when you are
choosing the regression parameters and covariate distributions, and 3) test error
rates are usually near 1; e.g., Se = 0.95 and Sp = 0.98.

(d) Using the techniques developed and vetted in parts (a)-(c), perform an analysis of
the Chlamydia data (see the course webpage).
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